The *dai trey linh* fishery on the Tonle Touch (Touch River), southeast Cambodia

Ngor, S.*, Aun, L. Deap and K.G. Hortle

Assessment of Mekong Capture Fisheries Component, MRC Fisheries Programme

ABSTRACT

The *dai trey linh* fishery is a previously unstudied bag-net (or stationary trawl) fishery that has operated since 1981 on a distributary river system east of the Mekong near the border with Viet Nam. The fishery, based on seven licensed bag-nets (*dais*), catches primarily *trey linh* and other white fish that, having migrated out of floodplains, are moving down-river. *Trey linh* are the abundant small cyprinids, *Cirrhinus lobatus* and *Cirrhinus siamensis*, known as *trey riel* elsewhere in Cambodia. The *dais* operate from June to December; other *dai* fisheries in Cambodia operate later in the year. Although licensed, the operators of the *dais* do not comply with licence conditions; for example, they are larger than permitted and fishing goes on for longer than permitted.

Monitoring of the fishery took place during the 2003 season. During this period, the composition of the fish fauna and the size fish changed; the early catch comprised larger fish that had spawned on the floodplain, but later in the season the catch included smaller fish that had grown on the floodplain. Although 161 fish species and one shrimp species were recorded, 80% of the total weight of the catch was made up of only five small cyprinid species, and 69% of this was *trey linh*. Virtually all fish were 0+ fish; i.e. in their first year of life. The size of small fish species increased during the season. Catches peaked between July and September. Most of the catch was exported to Viet Nam for food or for aquaculture feed. The total catch in 2003 was 404 tonnes valued at Riel340 M, or about US\$85,000, with an average price of around US\$0.21/kg; larger species were more valuable, the most expensive sold for US\$1.17/kg.

The 2003 catch was reportedly much lower than in previous years and was only about 20-25% of the 1,600-2,000 tonnes caught in 2002, when unit prices were one-third to one-quarter of 2003 prices. Prices peaked in 2003 when catches peaked as buyers, surprised by the unusually low catch, Competed for limited supplies. The small catch in 2003 was a result of the lower than usual flood that reduced fish production; catches were probably also affected by heavy fishing on the floodplains upstream. The dominance of young fish and very small catches of large fish confirm heavy fishing pressure. Illegal mosquito-net fences, set by villagers throughout the floodplain, catch many small fish of all species and limit fish access to habitats. *Dai* operators are in conflict with other fishers, including fishing lot lessees, local villagers, and poachers, as they all catch immature fish that *dais*, or fishers using different tackle, would otherwise catch further downstream. Furthermore, as the brood stock for the fishery may spend the dry season downstream in Vietnamese waters, the *dai trey linh* fishery impacts, and raises, local and cross-boundary issues. Maintaining and increasing fish production would benefit all parties, however to do so requires a concerted effort to reconcile their competing interests.

KEY WORDS: Cambodia, Mekong, river fisheries, fishing, dai

INTRODUCTION

Three *dai* (bag net or stationary trawl) fisheries, classified as 'large-scale fisheries' according to 1987 law, operate in Cambodia under licence from the Department of Fisheries. The most well known, the Tonle Sap *dai* fishery, which operates along the Tonle Sap (Sap River) in Phnom Penh and Kandal provinces, has 60 individually licensed and five unlicensed nets arranged in 14 rows. The *dai* catches fish migrating when water drains from the extensive floodplain areas around the Great Lake and Tonle Sap from mid-October to mid-March. This fishery is monitored every year (Ngor and Hem, 2001).

^{*} Dept of Fisheries, PO Box 582 Phnom Penh, Cambodia

The fishery described in this paper operates on the Tonle Touch (Touch River) system in Prey Veng province, and is known as *dai trey linh* (Figure 1). The name *trey linh* (or *ca linh* in Vietnamese) denotes a taxon comprising two small cyprinids, *Cirrhinus siamensis* and *Cirrhinus lobatus* (Roberts 1997), that dominate the catch and are known as *trey riel* elsewhere in Cambodia. Other small *Cirrhinus* species and small or juvenile cyprinids are sometimes included in the classification (note that in Khmer *linh* refers to another small cyprinid, *Thynnichthys thynnoides*, which also occurs in *dai* catches). This fishery has seven nets, making it smaller than the Tonle Sap *dai* fishery. There is no accurate published information on this fishery.

The third fishery, known as *dai bongkong* (or freshwater prawn bag net), is also situated in Prey Veng province. This fishery has 13 nets, set to catch the large catadromous prawn *Macrobrachium rosenbergii* (*bongkong*) as well as some fish. Detailed information about this fishery is not available.

The aim of this study, therefore, was to provide basic information about the dai trey linh fishery.

Description of the dai trey linh fishery

Location

The Tonle Touch River system begins as an overflow distributary of the Mekong near Kampong Cham (Figure 1). Other distributaries join the river about 20 km downstream of Phnom Penh as well as near Neak Luong (shown as a ferry crossing in Figure 1). Further downstream the river splits into two main branches, the Tonle Touch to the west and Prek Trabek to the east.

Although much of the water in the Tonle Touch River is derived from the Mekong when it overflows during the flood season, the river also drains a catchment area of about 3-4,000 km², including the extensive floodplains along the eastern side of the Mekong between Kampong Cham and the

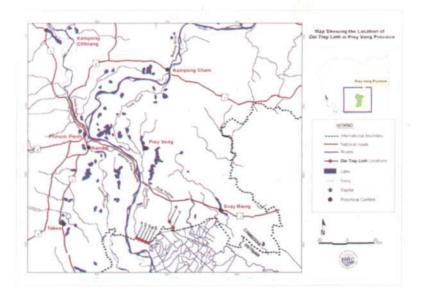


Figure 1. Location of the dai trey linh

Vietnamese border. In high-flood years, for example 2000, floods inundate almost the entire floodplain southeast of the town of Kampong Cham to the Mekong River in the west (MRC 2003).

Five *dais* are stationed along the stretch of the Tonle Touch that forms a part of the border between Cambodia and Viet Nam (Nos. 1-5 in Figure 1) and two more (Nos. 6 and 7) operate on Prek Trabek stream. The two rivers meander in a south-easterly direction to join the canal systems of the Vietnamese part of the delta. The floodplain stretches mainly across agricultural land used for single crop rice, but in Viet Nam, irrigation systems such as canals and floodgates allow biannual cultivation of rice.

History and licensing

This fishery started operating in 1981 and was legalised as a large-scale fishery in 1987. Ethnic Vietnamese operate the fishery under an exclusive two-year exploitation concession auctioned by the government to the highest bidder. This is one way the government extracts rent from fisheries. Currently the official fee is Riel52.9 M/yr or about US\$13,200/yr.

Season of operation

The *dai trey link* fishery is permitted to operate from August to December, but in actual fact operates from June to December, and sometimes continues to January; peak catches take place in September. Cambodian fisheries law prohibits operation of other medium and large-scale fisheries during some of this period. The open season for most other fisheries, including the Tonle Sap *dai* fishery, is from October to June. Licence conditions are similar to those of other large-scale fisheries.

Fishing gear

Each licence permits the use of a single conical bag net, or *dai*, to filter river water. The permits specify that the mouth of the net should be no more than 27 m wide and that the *dai* leave space in the river through which other craft may navigate. At the *dai trey link* fishery however, nets are 40-55 m wide and block 40-60% of the river.

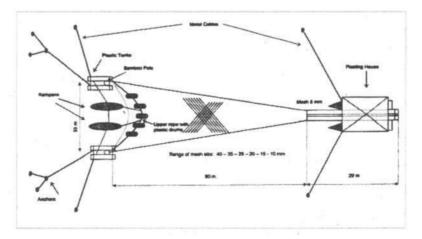


Figure 2. Schematic plan view of dai trey link

Dai width and depth are adjustable; depth is about 7-10 m with a small gap between the net and the riverbed, length is about 110 m and mesh aperture reduces from about 4 cm at the mouth to 0.8 cm at the cod-end.

Each *dai* is suspended from four empty 500 L plastic drums (two each side) that are attached by metal cables to anchors. Two bamboo poles *(dang chhi)* attached to either side of the drums keep the mouth of the net open and adjust the depth of the mouth. Sampans in the centre of each *dai* stretch the upper and lower ropes and keep it stable. The crew of the *dai* use a winch to raise the cod-end of the bag onto wooden boats, which also support a small house.

All but one of the *dais* have one cod-end on the net. *Dai* No. 1 has two cod-ends that the crew empty alternately; this halves the volume of fish handled and reduces the time that fish spend in the net. The crew empty the nets and transfer the fish to live-wells in the hull of transport junks; here they separate the dead or dying fish using hand-nets. Live fish are sold mainly for human consumption while dead fish, which fetch a lower price, sell for fish-feed. The *dai* operators also keep cages of snakehead *(Channa spp.)* along the riverbank, these are fed with dead fish from the *dais*.

Basis for the fishery

The Mekong floods from May to December each year; at Phnom Penh levels usually peak in September when flow is on average about 20 times the minimum flow in the dry season (MRC 2003). The floodwaters inundate large areas and provide rich habitats in which fish can feed and rapidly grow. Many fish spawn upstream of the floodplains in the Mekong River and its tributaries (Poulsen *et al.* 2003). The early floods carry large numbers of fish eggs and fry on to the inundated floodplains. Some riverine (whitefish) species also swim into these flooded areas to spawn and feed. According to *dai trey link* fishers, this local spawning peaks in the early flood period (usually July) and finishes mid-flood (usually September).

Early in the season, larger whitefish are caught as they migrate back out of the floodplains after spawning. Later, smaller fish (fingerlings or fry) are caught as they migrate back to the river after a period of weeks or months feeding on the floodplains. The Tonle Sap *dai* fishery operates later in the year because the Great Lake and its extensive floodplains act as a reservoir to delay the return of flows down the Tonle Sap (Ngor and Hem 2001). Although falling water levels may trigger migration off floodplains to the Tonle Sap, the primary reason is likely to be deteriorating water quality caused by decomposing vegetation. Welcomme (1985) records whitefish, which are relatively intolerant of low oxygen and pH, leaving the floodplains as water quality deteriorated.

River levels at the *dai trey link* fishery may be still rising at the time of peak catches in September. The *dai trey link* fishers believe that increasing quantities of 'black water' from floodplains flowing to the river signals the exodus of small whitefish from the floodplain to the river. The earlier migration off the floodplain (compared to the Tonle Sap fishery) probably reflects differences in floodplain hydrology and land use.

METHODS

This study was carried out at the *dai trey link* fishery from July to December 2003. In order to obtain an accurate estimate of the volume and composition of the catch, data collectors, specially trained in fish identification, were stationed at each *dai* during the weekdays.

Dais operate round the clock during the fishing season and the interval at which the crew empties and clears nets depends on the size of the catch; it may be every one to two hours when the catch is small or up to every ten minutes when the catch is large. Therefore, in order to obtain an estimate the total daily catch, the data collectors weighed ten daytime and five night-time hauls selected at random. In addition, they also took samples from at least four hauls to gauge the composition of fish species in the catch. They used a photo flipchart of over 200 species based on the Mekong Fish Database (2003) to identify the fish. They then weighed sub-samples of fish, sorted by species, using calibrated balances, and took measurements of the length of representatives of some the common species with a measuring board accurate to one millimetre. A number of fish belonging to the most common taxa were dissected to determine the stage of sexual development.

Dai operators provided information on the value of each species and other details about the operation of the business and, along with provincial fisheries officers, gave their views on general aspects of the fishery and its place in the local fishing industry.

RESULTS

Appendices 1-3 give monthly details of the quantity, total value, and unit price of all the species fish recorded during the survey.

Size of catch

Dai				- Total	% of total			
Dai	July	Aug	Sept	Oct	Nov	Dec	- 10tai	
1	44	720	171,701	71,421	7,700	5,040	256,626	63.5
2	22	194	18,459	10,793	5,040	3,361	37,869	9.4
3	23	304	8,085	16,474	2,373	733	27,992	6.9
4	29	53	8,055	11,195	575	322	20,229	5.0
5		97	963	1,762	463	321	3,606	0.9
6		32	36,944	6,143	1,732	620	45,471	11.3
7		170	4,905	4,369	1,960	877	12,281	3.0
Total	118	1,570	249,112	122,157	19,843	11,274	404,074	
% of total	0.03	0.39	61.65	30.23	4.91	2.79		

Table 1. Monthly and annual dai trey linh catch, 2003

Most *dais* recovered their largest monthly catch during September when over half the total annual haul of 404 tonnes was landed. *Dias* N° 3 and 4 recorded their largest catch slightly later, in October. *Dai* No.1, the *dai* farthest upstream on the Tonle Touch, recovered most (64%) of the total catch.

The catch in July was very low, barely enough to provide some food for the crew of the *dai*. The larger catches in August allowed *dai* owners to feed their snakeheads held in cages nearby. Sales began in September. Vietnamese, who come to the *dais* (expect *Dai* N° 6) by boat, buy nearly all the live catch. In 2003, exports to Viet Nam, largely to Dong Thap Province, accounted for 90% of the *dai trey linh's* production.

Figure 3a shows that the peak catch of the fishery and the peak water level at the Neak Loeung hydrological station were both in September. *Dai* catches increased as water levels rose, with three peaks evident, each separated by 10 days (24th August, 3rd and 13th September). As water levels fell, a series of smaller peaks was evident, separated by 10-15 day intervals. The water level in 2003 was the lowest of the years from 1999 and 2003 (Figure 3b). *Dai* operators said that their catches were about 20-25% of those in 2002, and also lower than in earlier years.

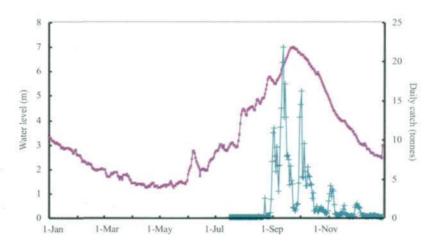
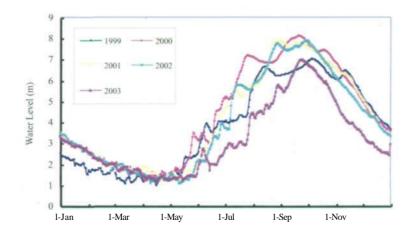
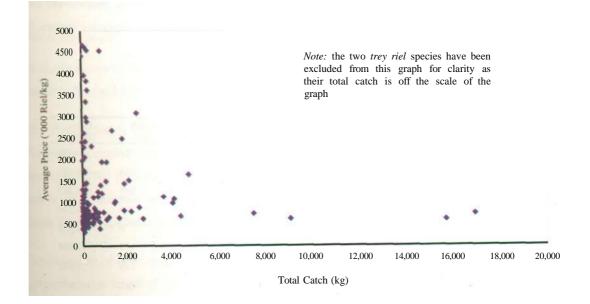


Figure 3a. Weight of catch compared with the level of the Mekong in 2003.




Figure 3b. Level of the Mekong in 2003 compared with the average level during the years 1999 to 2002.

Composition of catch

The survey recorded 161 fish species and one shrimp, *M. rosenbergii*. The ten most abundant species made up 85% of the catch by weight, and the five most abundant species, small cyprinids, comprised about 80% of the catch. (Table 2). Two *trey riel* species together made up about 69% of total catch.

Khmer name Scientific name	Jul	Aug	Sep	Oct	Nov	Dec	Total	%
Riel tob C. siamensis	1	299	124,897	22 222	591	564	148,574	36.8
Riel awng kam C. lobatus	6	234	62,199	66,200	566	1,300	130,505	32.3
Arch kok Labioharbus siamensis	0	5	6,923	9,139	539	312	16,918	4.2
Sloeuk russey Paralaubuca typus	0	2	13,164	2,150	285	88	15,689	3.9
Khnang veng Labioharbus kuhli	1	7	1,184	4,598	2,028	1,277	9,095	2.3
Pruol kralang Cirrhinus microlepis	0	0	5,060	2,147	241	84	7,532	1.9
Chhpin Hvpsiharbus malcolmi	0	0	4,068	490	165	24	4,747	1.2
Kanhchrouk chhnot Botia helodes	0	11	2,450	978	796	182	4,417	1.1
Chra keng Puntioplites proctozysron	0	0	1,783	303	1,769	259	4,114	1.0
Pra Pangasianodon hypophthaimus	0	56	3,026	579	235	138	4,034	1.0
Others (152 species)	110	956	24,358	13,351	12,628	7,046	58,449	14.5
Total (all species)	118	1,570	249,112	122,157	19,843	11,274	404,074	

Table. 2. Composition of catch giving total weight (kg) of the ten most abundant species

Khmer name Scientific name	Jul	Aug	Sep	Oct	Nov	Dec	Total	%	R/kg
Riel lob C. siamensis	1	123	97,956	14,581	343	307	113,311	33.5	763
Riel awng kam C. <i>lobatus</i>	2	90	52,472	43,374	405	670	97,012	28.7	743
Arch kok Lahiobarbus siamensis	0	2	4,940	6,705	516	620	12,783	3.8	756
Sloeuk russey Paralaubuca typus	0	1	8,061	1,332	140	48	9,582	2.8	611
Chhpin Hypsibarbus malcolmi	0	0	6,835	855	206	32	7,928	2.3	872
Kes	7	79	3,700	960	2,463	492	7,701	2.3	1,022
Micronema apogon Pruol/kralang Cirrhinus microiepis	0	0	3,942	1,586	117	49	5,695	1.7	1,200
Khnang veng Lahiobarbus kuhli	0	2	596	3,960	880	255	5,694	1.7	1,289
Ros/ptuok Channa striata	4	24	2,486	941	805	332	4,593	1.4	1,116
Chra keng Puntioplites proctozysron	0	0	2,937	555	842	150	4,484	1.3	1,112
Others (152 species)	268	1,080	29,452	18,114	14,482	6,016	69,411	20.5	1,187
Total (all species)	282	1,400	213,377	92,964	21,200	8,971	338,194		

Table 3. Total value of catch (R1000s) and the ten most valuable species

Value of catch

The total value of the catch was Riel 338,194, or about US\$84,549 (Table 3). The ten most abundant species accounted for nearly 80% of the value of the catch although their unit value (R/kg) was relatively low (Table 3). About 62% of the value came form the sale of *trey riel*. *Dai* N°1 earned 61% of the total value of fish catch.

The abundance of a species of fish bares little relation to its value; while some of the most expensive fish (R/kg) were among the rarest species; many rarer species fetched lower prices (Figure 4). The most valuable species sold for between Riel 3-4,000/kg (US\$0.75-1.00/kg); the most expensive species, the kray (*Chitala blanci*) fetched Riel 4.676/kg (Table 4).

Khmer name	Species	Catch (kg)	Price (R/kg)
Kray	Chitala blanci	71	4,676
Khchoueng	Macrognathus taeniagaster	144	4,633
Bong kong (shrimp)	Macrobrachium rosenbergii	268	4,562
Khchoeung	Mastacembalus favus	809	4,539
Prama	Boesemania microiepis	8	4,425
Kes	Micronema bleekeri	105	3,974
Kes	Kryptopterus micronema	218	3,842
Tranel	Hemibagrus filamentus	261	3,64
Slat/kray	Chitala lopis	196	3,35
Kes	Micronema apogon	2,480	3,105

In 2003, the prices of fish reached a peak in September or October depending on the species; for example, sales of *trey riel*, the most commercially important component of the catch, reached a peak in September (Table 5). During these months, the total weight of the catch also reached its peak. Usually prices are low when catches are high but in 2003 the unusually low total catch kept prices buoyant. Buyers, who had planned to buy in the peak months, competed for limited supplies, driving prices upwards.

Discussions with *dai* owners and an appraisal of their limited logbook data shows that catch rates in 2003 were 20-25% of those in 2002 while unit prices were three to four times higher.

Khmer name Scientific name	Jul	Aug	Sep	Oct	Nov	Dec	Mean
Riel tob C. siamensis	500	411	784	656	581	545	763
Riel tob <i>C. siamensis</i>	500	411	784	656	581	545	763
Riel awng kam <i>C. lobatus</i>	288	383	844	655	715	515	743
Sloeuk russey Paralaubuca typus		400	612	620	491	548	611
Chhpin Hypsibarbus malcolmi			1,680	1,744	1,248	1,327	1,670
lies Micronema apogon	2,417	3,611	3,439	3,678	3,328	1,300	3,105
Pruol/kralang Cirrhinus microlepis			779	739	486	587	756
Khnang veng Labiobarbus kuhli		314	503	861	434	200	626
Ros/ptuok Channa striata	2,000	747	3,123	1,646	2,615	2,577	2,498
Chra keng Puntioplites proctozysron			1,647	1,832	476	578	1,090
Mean price (all species)	2,400	892	857	761	1068	796	837

Table 5. Monthly price (R/kg) for the ten species that contributed most to the value of sales

Size offish caught

In all, the survey recorded the length of 28,589 fish (Table 6); the only exclusions were a few large fish caught in June and July.

The average length of the five common small cyprinid species increased from August through to November. Length-frequency data indicates that almost all the fish of these species were offspring spawned in 2003 (0+), only a very few (<1%) fish were older (1+) suggesting the increase in average size is due, in the main, to rapid growth of juvenile fish. The December catch however, recovered fewer larger fish, perhaps because the smallest fish leave the flooded areas last.

Similarly, fish of other species were also largely the progeny of spawning during 2003. However, the greatest average length of some species occurred in earlier months because samples collected at these times contained some larger, older, fish. For example, in the instance of *Puntioplites falcifer*, while 0+ fish dominated the catch, 1+ fish were more common in September and as a result the average length of individuals in that month was greater.

The dai trey linh fishery on the Tonle Touch (Touch River), southeast Cambodia

Khmer name		Mea	n total				
Scientific name	Catch (kg)	Aug	Sept	Oct	Nov	Dec	- Total number
Riel top C. siamensis	148,574	5.3	6.9	8.4	11.1	9.0	4,617
Riel ong kam C. lobatus	130,505	6.1	7.2	8.3	9.5	8.6	7,520
Arch kok <i>Labiobarbus siamensis</i>	16,918	7.1	6.8	8.8	9.3	7.4	3,750
Sloeuk russey Paralaubuca typus	15,689		7.5	8.0	9.1	8.0	2,442
Khnang veng Labiobarbus kuhli	9,095	9.2	7.1	8.3	8.5	8.0	2,503
Pruol/kralang Cirrhinus microlepis	7,532		11.6	12.1	11.6	10.8	910
Chhpin <i>Hypsibarbus</i> spp.	6,647		13.7	10.5	10.3	9.9	304
Pra Pangasianodon hypophthalmus	4,034	7.3	12.2	12.9	11.9	12.5	663
Kes <i>Micronema</i> spp.	2,480	23.9	22.9	19.2	15.5	14.4	723
Kaek Labeo chrysophekadion	2,235	5.0	7.7	10.4	9.6	9.4	527
Chan teas phluk Parachela spp.	2,094		7.0	6.2	8.6	7.9	507
Ampil turn Puntius orphoides	1,898		13.6	9.5	12.5	13.1	51
Linh Thynnichthys thynnoides	1,700	6.7	7.8			14.4	156
Chhkok Cyclocheilichthys enoplos	1,504		13.9	8.4	8.8	9.6	1,031
Chlaing hai Belodontichthys truncates	1,081		20.5	22.7	21.0	23.5	88
Chra keng Puntioplites falcifer	714	6.8	10.4	8.7	7.6	7.3	2,458
Krom Osteochilus melanopleura	705		6.0	12.5	9.4	11.2	252
Khman <i>Hampala</i> spp.	217		15.0	13.8	10.4	10.9	87
Total							28,589

 Table 6. Weight of catch, mean length (per Month) and total number of the 18 most common fish species caught in the dai trey linh fishery from August to December 2003

Stage of maturity

July catches were small, mostly comprising larger whitefish with ripe gonads (i.e. full of eggs) and ready to spawn. The few large fish caught in August and September were in poor condition having already spawned. These general observations confirmed the time of migration and local spawning on the floodplain reported by the *dai* fishers. The catch of spawning fish early in the season shows that some fish move downstream on their spawning migration (the *dais* cannot catch fish swimming upstream).

Conflicts in the dai trey linh fishery

As the fishery operates in the closed fishing season conflicts frequently occur between *dai trey linh* operators, fishing lot lessees, poachers, and villagers. The various fisher's perspectives may be summarised as follows:

1. Dai trey linh owners: the dais depend on the small cyprinids that migrate down the river and out

Proceedings of the 6th Technical Symposium on Mekong Fisheries, Pakse, Lao PDR 26-28 November 2003

44

of the floodplains back to the river. Illegal fishing on the floodplains and in rivers has a serious impact on *dai trey linh* production. The most common illegal fishing gear used is mosquito-netting fences with traps (locally known as *say yoeun*). Local fishers or villagers in collusion with fishing lot lessees operate these. In an effort to prevent this illegal fishing, *dai* operators cooperate with local fishery inspectors and help to patrol the river or floodplains. *Dais* are permitted to operate only in specific locations, but when the river overtops its banks, downstream-moving fish may not be caught by the *dais*, so they are moved to other more favourable, but non-permitted, areas. This creates conflicts, especially with fishing lot lessees.

- 2. Fishing lot lessees: most floodplain areas along the *Tonle Touch* are fishing lots. Cambodian fisheries law prohibits large-scale fisheries, particularly fishing lots, from operating in the closed season. Lessees have a right to protect their lots from illegal fishing practices. However, some lessees rent parts of their lot to fishers, who use illegal gear such as *say yoeun*, creating conflict amongst *dai trey linh* owners, lot lessees and other fishers. When water starts flowing out of the floodplains back into the river lessees often block streams or canals with bamboo fences to keep fish in their lots. This reduces the production of the *dai* fishery and leads to further conflict.
- 3. Poachers: poaching often takes place at night upstream of the *dais*, especially during peak catch periods. Poachers can sometimes catch huge amounts of fish in a short period, quickly covering the costs of fishing gear.
- 4. Villagers: although fishing with *say yoeun* is illegal, these nets are widely used by villagers in the floodplains and river near their homes. Some nets measure hundreds of metres in length and block extensive areas of floodplain. The catch is not just for home consumption; they also sell large quantities of very young fish for snakehead feed. *Dai* operators who buy a legal fishing license want provincial fishery officers to prevent these illegal practices so that they can catch more fish. However, villagers try to protect their fishing gear from confiscation.

DISCUSSION

The *dai trey linh* fishery catch is much smaller than the *dai* Tonle Sap catch, as it has only seven nets (as opposed to 65). The *dai trey linh* fishery reportedly caught 1,600-2,000 tonnes in 2002, and we recorded 404 tonnes in 2003. In the same years, the Tonle Sap *dai* fishery caught 12,427 tons and 6,551 tons respectively (MRC/DOF monitoring data). Low flood levels in 2003 severely affected both fisheries. The *dai trey linh* fishery catch was mostly (69%) very small (0+) *trey riel* and other small cyprinids, whereas the *dai* Tonle Sap catches more large fish, in 2003-4 *trey riel* comprised only about 40% of its catch by weight.

The very high proportion of *trey riel* and other small cyprinids and the preponderance 0+ fish are signs that the fishery is heavily 'fished down', removing larger fish and larger species. Even if the fishery were stable from year-to-year, many very small, young fish are being taken, both by the *dais* and by *say yeoun* when they are even younger, upstream in the floodplains. Because many fishers are in

competition it pays each of them to take any fish of any size and so the total yield of the fishery suffers, as fish are not given time to grow. This is both a local and an international, or trans-boundary, issue as any fish that manage to pass the *dais* would normally pass into Viet Nam, and have time grow more before finally being caught. It also seems likely that the larger fish caught at the start of the season are attempting to return (swimming downstream) to dry-season refuges in Viet Nam. As Viet Nam imports 90% of the catch, Viet Nam should introduce conservation measures (such as protection of brood stock) to improve production in Cambodia, even if purely out of self-interest.

Fishers can take various measures to conserve their fisheries and to reduce conflicts. Firstly, the *dais* owners and operators should observe the stipulations of fishing license and, in particular, should not start operating until August. They would lose little income as they catch relatively few fish before August, and many are larger fish, the local brood stock. *Dais* owners should not move their gear; this practice leads to conflict and damages their credibility when they demand that others comply with fisheries law they themselves transgress. However, the main issue is the extensive and increasing use of *say yeoun*, which not only unselectively catch all species and all small fish, but also create barriers to colonisation across large sections of floodplain, greatly affecting production. Finally, enforcement regulations should take place within a framework where some form of co-management reconciles competing interests, and when fishers agree to forego short-term benefits for general long-term gains.

REFERENCES

MRC (2003) State of the Basin Report. Mekong River Commission, Phnom Penh.

Ngor, P. B and Hem, C. (2001) Analysis of the *dai* catches in Phnom Penh / Kandal. In: *Third MRC Technical Symposium on Mekong Fisheries*. Mekong Conference Series No.1. K.I. Matics ed. Mekong River Commission, Phnom Penh, pp. 44-51.

Poulsen, A. F, Ouch, P, Viravong, S, Suntornratana, U, and Nguyen, T. T. (2002) Fish migrations of the Lower Mekong River Basin: implications for development planning and environmental management. *MRC Technical Paper* No. 8.

Roberts, T. R. (1997) Systematic revision of the tropical Asian labeoin cyprinid fish genus *Cirrhinus*, with descriptions of new species and biological observations on *C. lobatus. Natural History Bulletin of the Siam Society* 45, 171 -203.

Welcomme, R. L. (1985) River fisheries. FAO Fisheries Technical Paper No. 262.

46

Khmer name	Scientific name			Ν	Total				
Kinner näme	Scientific name	Jul	Aug	Sep	Oct	Nov.	Dec.	Catch (kg)	%
RIEL TOB	Cirrhinus siamensis	1	299	124897	22222	591	564	148,574	36.77%
RIEL AWNG KAM	Cirrhinus lobatus	6	2.54	62199	66200	566	1300	130,505	32.30%
ARCH KOK	Labiobarbus siamensis	0	5	6923	9 139	539	312	16,918	4.19%
SI.OEUK RUSSEY	Paralaubuca typus	0	2	13164	2150	285	88	15,689	3.88%
KHNANG VENG	Labiobarbus kuhli	1	7	1184	4598	2028	1277	9,095	2.25%
PRVOL/KRALANG	Cirrhinus microlepis	0	0	5060	2147	241	84	7,532	1.86%
CHHPIN	Hypsibarbus malcolmi	0	0	4068	490	165	24	4,747	1.1 7%
KANHCHROUK CHHNOT	Botia helodes	0	11	2450	978	796	182	4,417	1.09%
CHRA KENG	Puntioplites proctozysron			1783	303	1769	259	4,114	1.02%
PRA	Pangasianodon hypophthalmus	0	56	3026	579	235	138	4,034	1.00%
ANDA T CHHKE	Cynoglossus feldmanni	3	169	1209	645	817	795	3,638	0.90%
CHRA KENG	Puntioplites waandersi	0	33	30	453	1429	823	2,768	0.69%
KRANH	Anabas testudineus	10	110	2005	283	133	27	2,568	0.64%
KES	Micronema apogon	3	22	1076	261	740	378	2,480	0.61%
KAEK	Labeo chrysophekadion	0	1	567	726	516	425	2,235	0.55%
CHHLANHG	Hemibagrus spilopterus	2	8	980	446	406	274	2,116	0.52%
CHHPIN	Hypsibarbus lagleri	0	0	244	1326	278	52	1,900	0.32%
MPIL TUM		0	0	1761	88	36	13	1,900	0.47%
MPIL IUM 205/PTUOK	Puntius orphoides Channa striata	2	32	796	88 572	308	13	1,898	0.47%
LINH	Thynnichthys thynnoides	1	7	1626	57	4	5	1,700	0.42%
СННКОК	Cyclocheilichthys enoplos	0	0	5X2	286	474	162	1,504	0.37%
CHANTEAS PHLUK	Parachela maculicauda	0	0	985	499	1	0	1,485	0.37%
SANDA Y	Wallago attu	0	21	1318	5	1	10	1,355	0.34%
KANHCHROUK KRAHORM	Bolia modesta	0	23	46	570	425	144	1,208	0.30%
BANDOL AMPOAV	Corica laciniata	0	0	246	338	450	83	1,117	0.28%
RUSCHEK	Acanthopsoides spp.	0	0	26	149	864	77	1,116	0.28%
KHLANG HAI	Belodontichlhys truncatus	0	0	461	265	315	40	1,081	0.27%
ANTRORB	Pristolepis fasciatu	0	0	500	223	163	92	978	0.24%
AHE LOEUNG	Barbodes schwanenfeldii	0	0	877	5	17	3	902	0.22%
SLAT	Notopterus notopterus	0	0	307	95	291	197	890	0.22%
KHMAN	Hampala dispar	0	0	613	60	93	48	814	0.20%
KHCHOEUNG	Mastacembalus favus	60	94	89	339	175	52	809	0.20%
KAMPOT	Tetraodon spp.	0	3	377	284	92	36	792	0.20%
PHKAR KOR	Cirrhinus molitorella	2	0	458	227	57	34	778	0.19%
KANHCHOS CHHNOT	Mystus atrifasciatus	2	7	496	80	14	143	742	0.18%
20	Pangasius larnaudii	0	10	72	443	173	31	729	0.18%
CHRA KENG	Puntioplites falcifer	0	00	87	4.5	563	21	714	0.18%
KROM	Osteochilus melanopleura	0	0	263	174	231	37	705	0.17%
KANHCHOS CHHNOT	Mystus mysticetus	0	36	299	177	164	18	694	0.17%
KANHCHROUK	Bolia morleti	0	0	55	73	430	71	629	0.16%
CHANTEAS PHLUK	Parachela siamensis	0	1	6	431	106	29	573	0.14%
CHHVEAT	Pangasius macronema	4	13	207	132	100	78	541	0.13%
CHHLONH	Macrognathus siamensis	4	8	390	48	56	24	526	0.13%
KANHCHROUK	Bolia beauforti Baabaaa amataamia	0	0	160	269	72	5	506	0.13%
CHANGWA MOUL	Rasbora aurotaenia	0	4	170	217	95	16	502	0.12%
CHANGWA CHUNCHUOK	Crossocheilus reticulatus	0	1	42	27	87	342	499	0.12%
KAMPOUL BAY	Cosmochilus harmandi	0	0	264	142	48	39	493	0.12%
KAHE KRORHORM	Barbodes altus	0	0	428	25	22	18	493	0.12%
PRA KANDOL	Helicophagus waandersii	0	4	30.5	107	50	1	467	0.12%
SRAKA KDAM	Cyclocheilichthys lagleri	0	0	37	19	49	359	464	0.11%
CHHKOK PHLEUNG	Cyclocheilichthys furcatus	0	0	418	0	6	10	4.54	0.11%
NGKAT PRAK	Puntius aurotaeniatus	0	4	8	191	4	213	420	0.10%
KANHCHOS BAY	Mystus albolineatus	3	0	33	52	181	106	375	0.09%
PAVA MOKMUOY	Labeo dyocheilus	0	0	195	97	0	1	293	0.07%
KROS	Osteochilus hasseltii	0	0	239	10	23	16	288	0.07%
CHHMAR	Setipinna melanochir	0	5	260	15	4	0	284	0.07%
BANG KORNG	Macrobrabrium rogenbergii	0	0	64	50	62	92	268	0.07%
TRANEL	Hemibagrus filamentus	0	0	0	175	86	0	261	0.06%
KROS	Osteochilus waandersii	0	0	51	22	47	136	256	0.06%

Total Catch (kg) by Species by Months for Dai Trey Link

Proceedings of the 6th Technical Symposium on Mekong Fisheries, Pakse, Lao PDR 26-28 November 2003 47

Total Catch (kg) by Species by Months for Dai Trey Link

Khmer name	Scientific name	Mo nth						Total			
inimor numb	Selentine name	Jul	Aug	Sep	Oct	Nov.	Dec.	Catch (kg)	%		
KA MPHLIE V KHLANH	Kryplopterus cryptopterus	0	54	90	16	75	12	247	0.06%		
KANHCHOS	Mystus singarlngan	2	0	147	45	27	24	245	0.06%		
PROR LUNG/CHRA WLANG	Leptobarbus hoevenii	0	0	162	62	4	13	241	0.06%		
KANHCHROUK LOEVNG	Botia lecontei	0	1	14	185	38	2	240	0.06%		
KA MPHLIEV	Kryptopterus hexapterus	0	0	58	0	98	83	239	0.06%		
CHANGWA NONONG	Lobocheilos quadrilineatus	0	0	19	0	32	188	239	0.06%		
ANGKATPRAK	Puntius brevis spp.	0	6	78	48	27	68	227	0.06%		
ANDAT CHHKE	Synaptura marginata	0	8	175	19	21	1	224	0.06%		
KES	Kryplopterus micronema	0	7	0	20	116	75	218	0.05%		
KHMAN	Hampala maerolepidola	6	1	65	22	83	40	217	0.05%		
KROS	Osteochilus microcephalus	0	0	49	4	104	60	217	0.05%		
KRAY	Chitala ornata	0	0	0	215	0	0	215	0.05%		
BANDOL AMPOAV	Clupeichthys aesarnensis	0	0	0	142	70	0	212	0.05%		
KA MPHLEANH SA MREI	Trichogaster trichopterus	0	8	122	41	29	12	212	0.05%		
KAMPHLIEV	Kryplopterus sehilbeides	1	3	3	0	25	173	205	0.05%		
CHHPIN PRAK	Barbodes gonionotus	0	13	180	11	0	0	204	0.05%		
KANHCHOS KDA ONG	Heterobagrus bocourri	0	5	0	22	24	146	197	0.05%		
SLAT/KRAY	Chitala lopis	0	0	0	1 1	171	14	196	0.05%		
CHHPIN	Hypsibarbus pierrei	0	0	13	132	30	17	192	0.05%		
KANHCHOS CHHNOT	Mystus multiradiatus	0	93	23	41	13	7	177	0.04%		
ANDENG TUNLE	Plotosus canius	0	0	169	0	0	3	172	0.04%		
KHSAN	Channa gachua	3	18	95	12	20	2	150	0.04%		
KES PRAK	Kryplopterus limpok	0	55	89	0	1	0	145	0.04%		
CHHKOK TITUY	Albulichthys albuloides	0	0	1 10	2	31	2	145	0.04%		
CHCHOUENG	Macrognathus taeniagaster	0	0	47	95	2	0	144	0.04%		
CAMBOT CHRAMOS	Amblyrhynchichthys truncatus	0	0	0	2	104	38	144	0.04%		
AMPHLIEV	Kryplopterus moorei	0	0	0	73	54	4	131	0.03%		
SANDOL SOK/SMOK	Gyrinocheilus spp.	0	2	57	25	39	8	131	0.03%		
NDENG TUN	Clarias macrocephalus	0	4	2	8	44	66	124	0.03%		
DANG KHTENG	Macrochirichthys macrochirus	0	0	57	60	1	2	120	0.03%		
ANDAT CHHKE	Cynogiossus punticeps	2	1	13	91	1	0	108	0.03%		
ANTONG	Monopterus a/bus	0	0	67	37	1	1	106	0.03%		
KA MPHLIE V STOE UNO	Kryplopterus cheveyi	0	4	17	5	60	20	106	0.03%		
KES	Micronema bleekeri	0	1	69	31	4	0	105	0.03%		
SLOEUK RUSSEY	Paralaubuca barroni	0	0	27	73	1	2	103	0.03%		
KRORMORM	Ompok bimaculatus	0	0	44	28	16	8	96	0.02%		
BANG KUOY	Luciosoma bleekeri	0	0	92	20	2	0	96	0.02%		
ANDENG TUN	Clarias meladerma	0	1	2	17	64	4	88	0.02%		
KAMPEUS	ciunas menaerma		0	2	14	49	17	82	0.02%		
		0									
CHHVEAT KANTRANG PRENG	Pangasius polyuranodon Parambassis wolffii	1	7 0	43 0	7 17	5 58	17 3	80 78	0.02%		
				41					0.02%		
	Achiroides leucorhynchos	0	0		33 29	1	3	78			
KRAY	Chitala blanci	0	0	0		42	0	71	0.02%		
KULREANG/KAHOR	Catlocarpio siamensis	0	0	10	37	23	0	70	0.02%		
KROS	Osteochilus lini	0	1	65	0	4	0	70	0.02%		
SLOEUK RUSSEY	Paralaubuca harmandi	0	0	62	0	0	0	62	0.02%		
PHTONG	Xenentodon cancila spp.	0	0	0	0	25	35	60	0.01%		
SRAKA KDAM	Cyclochellichthys repasson	0	0	4	40	0	15	59	0.01%		
DAMREY	Oxyeleotris marmorata	0	0	0	38	10	9	57	0.01%		
CHCHOUENG	Macrognathus maculatus	0	0	20	26	7	2	55	0.01%		
TA AUN	Wallago leerii	0	0	10	34	8	3	55	0.01%		
SANDOL AMPOAV	Clupeichthys borneensis	0	0	0	0	53	0	53	0.01%		
KE	Pangasius conchophilus	0	0	0	46	1	4	51	0.01%		
NDAT CHHKE	Brachirus harmandi	0	0	13	29	7	2	51	0.01%		
SRAKA KDAM	Cyclochellichthys apogon	0	0	4	15	10	20	49	0.01%		
PHKAR KOR	Cyclocheilichthys armatus	0	0	7	37	3	0	47	0.01%		
BANDOL AMPOAV	clupelchtys goniognathys	0	1	0	0	41	0	42	0.01%		
KUL CHEK	Epalzcorhynchos frenulum	0	1	1	17	4	17	40	0.01%		
CHANGWA	Rasbora myersi	0	1	25	2	1	10	39	0.01%		

Khmer name	Seientitle name			М	Ionth			Tot	
		Jul	Aug	Sep	Oct	Nov.	Dec.	Catch (kg)	%
CHANTEAS PHLUK	Parachela williaminae	0	0	9	16	7	4	36	0.01%
SLOEUK RUSSEY	Paralaubuca riveroi	0	0	30	5	0	0	35	0.01%
KANHCHOS THMOR	Leiocassis siamensis	0	0	0	10	11	13	34	0.01%
KANHCHOS	Mystus wolffi	1	2	14	1	6	8	32	0.01%
KANH CHANH CHRAS THOM	Parambassis apogonoides	0	7	15	9	1	0	32	0.01%
KANH CHANH CHRAS TOCH	Parambassis siamensis	0	0	14	7	3	7	31	0.01%
KAMPHLEANH PHLUK	Trichogaster microlepis	0	11	11	0	1	4	27	0.01%
CHANGWA NONONG	Lobochellos melanotaenia	0	9	3	7	0	8	27	0.0067%
ANDAT CHHKE	Brachirus orientalis	0	0	24	1	1	0	26	0.0064%
CHANGWA PHLIENG	Esomus longimana	0	0	0	4	5	14	23	0.0057%
SLOEUK RUSSEY	Oxygaster anomaiura	0	0	7	10	0	0	17	0.0042%
CHANGWA CHHNOT	Rasbora espei	0	0	0	14	0	1	15	0.0037%
LOLORK SOR	Osteochilus schlegeli	0	0	12	0	2	0	14	0.0035%
CHANGWA	Rasbora hobelmani	0	0	7	6	1	0	14	0.0035%
CHANGWA NONONG	Lobocheilos davisi	0	0	0	0	5	7	12	0.0030%
CHANLUON MOAN	Coilia lindmani	0	2	4	1	3	2	12	0.0030%
CHANGWA CHHNOT	Boraras urophthalmoides	0	0	0	8	3	0	11	0.0027%
PRA KHCHOA	Pangasius bocourti	2	1	8	0	0	0	11	0.0027%
ANDENG ROEUNG	Clarias batrachus	0	0	1	5	0	4	10	0.00%
KANTHOR	Trichogaster pectoralis	0	0	3	5	0	1	9	0.0022%
PRAMA	Boesemania tnicrolepis	0	1	0	0	7	0	8	0.00%
ANTONG	Ophisternon bengalensc	0	0	0	7	0	1	8	0.0020%
KAMPREAM	Polynemus multifilis spp.	0	0	0	0	6	1	7	0.0017%
CHHDOR/D1EP	Channa micropeltes	0	0	0	0	6	0	6	0.0015%
CARP SAMANH	Cyprinus carpio	0	0	0	2	1	3	6	0.0015%
CHANLUON MOAN	Coilia macrognathos	0	1	0	0	0	5	6	0.0015%
KANHCHORN CHEY	Channa lucius	0	0	5	0	0	0	5	0.0012%
CHEK TUM	Bagrichthys macracanthus	0	1	0	0	1	2	4	0.0010%
KAOK	Arius caelatus	0	0	0	0	2	1	3	0.0007%
KANHCHOS KRA WBEY	Glyptothorax fuscus	0	3	0	0	0	0	3	0.0007%
ANDENG AFRIC	Clarias gariepinus	0	0	0	0	0	2	2	0.0005%
KRORMORM	Hemisilurus mekongensis	0	0	2	0	0	0	2	0.0005%
TRASORK	Probarbus jullieni	0	0	0	0	2	0	2	0.0005%
CHANGWA CHHNOT	Rasbora paviei	0	0	0	0	2	0	2	0.0005%
KANHCHEAK SLA	Toxotes chatareus	0	1	0	1	0	0	2	0.0005%
CHHPIN KRAHORM	Hypsibarbus wetmorei	0	0	0	0	2	0	2	0.0005%
KANHCHREA		0	1	0	0	0	0	1	0.0002%
KAOK	Arius truncatus	0	0	0	0	0	1	1	0.0002%
CHHKOK POKMOAT BEY	Cyclocheilichthys heteronetna	0	0	0	0	1	0	1	0.0002%
KHLA /BEY KAMNAT	Systomus partipentazona	0	0	0	1	0	0	1	0.0002%
KAOK	Hemipimelodus bicolor	0	1	0	0	0	0	1	0.0002%
KAOK	Hemipimelodus borneensis	0	1	0	0	0	0	1	0.0002%
PO PRUY	Pangasius sanitwongsei	0	1	0	0	0	0	1	0.0002%
ANDAT CHHKE	Brachirus panoides	0	1	0	0	0	0	1	0.0002%
	-	1 17	1570	249113	122165	19843	11274	404083	100.00%

Total Catch (kg) by Species by Months for Dai Trey Link

Total Sale Price by Species by Months for Dai Trey Linh

Khmer name	Scientific name			М	onth		Tota l			
Kilmer näme	scientific name	Jul	Aug	Sep	Oct	Nov.	Dec.	Value	%	
RIEL TOB	Cirrhinus siamensis	1	123	97,956	14,581	343	307	113,311	33.5%	
RIEL AWNG KAM	Cirrhinus lobatus	2	90	52,472	43,374	405	670	97,012	28.7%	
ARCH KOK	Labiobarbus siamensis	0	2	4,940	6,705	516	620	12,783	3.8%	
SLOEUK RUSSEY	Paralaubuca typus	0	1	8,061	1,332	140	48	9,582	2.8%	
CHHPIN	Hypsibarbus malcolmi	0	0	6,835	855	206	32	7,928	2.3%	
KES	Micronema apogon	7	79	3,700	960	2,463	492	7,701	2.3%	
PRUOL/KRALANG	Cirrhinus microlepis	0	0	3,942	1,586	117	49	5,695	1.7%	
KHNANG VENG	Labiobarbits kuhli	0	2	596	3,960	880	255	5,694	1.7%	
ROS/PTUOK	Channa striata	4	24	2,486	941	805	332	4,593	1.4%	
CHRA KENG	Puniioplites proctozysron	0	0	2,937	555	842	150	4,484	1.3%	
ANDAT CHHKE	Cynoglossus feldmanni	2	149	981	1,086	890	1,060	4,167	1.2%	
PRA	Pangasianodon hypophlhalmus	0	20	3,033	519	285	149	4,006	1.2%	
KHCHOEUNG	Mastaccmbalus favus	228	362	367	1,861	671	184	3,672	1.1%	
SANDAY	Waliago attu	0	42	3,577	3	3	26	3,651	1.1%	
CHHLANHG	Hemibagrus spilopterus	3	6	1,941	622	516	158	3,246	0.96%	
KANHCHROUK CHHNOT	Botia helodes	0	6	1,819	745	418	106	3,093	0.91%	
CHHPIN	Hypsibarbus lagleri	0	0	131	2,286	303	57	2.777	0.82%	
KRANH	Anabas testudineus	4	100	1,770	314	105	21	2,314	0.68%	
RUSCHEK	Acanthopsoides spp.	0	0	13	285	1,824	70	2,314	0.65%	
KAEK	Labeo chrysophekadion	0	1	495	784	301	222	1,802	0.53%	
CHRA KENG	Puntioplites waandersi	0	23	24	398	852	449	1,745	0.52%	
SLAT	Notopterus notopterus	0	0	349	135	964	290	1,745	0.51%	
		0	0			578	49		0.49%	
KHLANG HAI AMPIL TUM	r.			579 1,484	436 47	40		1,643 1,584	0.47%	
	Puntius orphoides	0	0				13			
CHHKOK	Cyclocheilichthys enoplos	0	0	944	202	264	141	1,551	0.46%	
CHANTEAS PHLUK	Parachela maculicauda	0	0	985	499	0	0	1,484		
BANG KORNG	Macrobrabrium rogenbergii	0	0	215	223	319	466	1,223	0.36%	
KHMAN	Hampala dispar	0	0	678	98	334	45	1,154	0.34%	
KAHE LOEUNG	Barbodes sehwanenfeldii	0	0	1,090	7	11	2	1,110	0.33%	
LINH	Thynnichthys thynnoides	0	6	1,058	35	3	3	1,105	0.33%	
CHHKOK PHLEUNG	Cyclocheilichthys furcatus	0	0	991	0	6	17	1,014	0.30%	
TRANEL	Hemibagrus filamentus	0	0	0	525	426	0	951	0.28%	
PO	Pangasius larnaudii	0	6	93	496	311	25	931	0.28%	
KES	Kryploplerus micronema	0	27	0	48	481	281	838	0.25%	
KANHCHROUK KRAHORM	Botia modesta	0	14	16	520	198	75	822	0.24%	
KROM	Osteochilus melanopleura	0	0	367	224	123	106	819	0.24%	
KANTRORB	Pristolepis fasciala	0	0	424	210	84	49	768	0.23%	
BANDOL AMPOAV	Corica laciniata	0	0	96	256	290	50	693	0.20%	
KHCHOUENG	Macrognathus taeniagaster	0	0	118	547	2	0	667	0.20%	
SLAT/KRAY	Chitala lopis	0	0	0	44	599	16	658	0.19%	
KRAY	Chitala ornata	0	0	0	625	0	0	625	0.18%	
KANHCHOS CHHNOT	Mystus atrifasciatus	1	5	415	66	7	71	564	0.17%	
KAMPOUL BAY	Cosmochilus harmandi	0	0	277	217	35	29	558	0.17%	
KANHCHOS CHHNOT	Mystus mysticetus	0	18	248	147	107	13	534	0.16%	
ANDENG TUNLE	Plotosus canius	0	0	507	0	0	8	515	0.15%	
CHRA KENG	Puniioplites falcifer	0	0	123	34	315	11	482	0.14%	
CHANTEAS PHLUK	Parachela siamensis	0	1	3	379	76	22	481	0.14%	
CHHVEAT	Pangasius macronema	1	4	186	99	81	108	479	0.14%	
KAMPOT	Telraodon spp.	0	1	151	158	102	25	436	0.13%	
KES	Micronema bleekeri	0	0	252	155	10	0	417	0.12%	
KANHCHROUK	Botia morleti	0	0	47	124	202	32	405	0.12%	
CHHLONH	Macrognathus siamensis	0	11	233	55	81	14	394	0.12%	
KES PRAK	Kryploplerus limpok	0	82	267	0	4	0	353	0.10%	
KANHCHROUK	Botia beauforti	0	0	76	212	46	5	339	0.10%	
KRAY	Chitala blanci	0	0	0	29	303	0	332	0.10%	
CHANGWA MOUL	Rasbora aurotaenia	0	2	113	141	66	8	331	0.10%	
KAHE KRORHORM	Barbodes alius	0	0	274	31	14	10	329	0.10%	
PRA KANDOL	Helicophagus waandersii	0	2	166	75	81	1	324	0.10%	
PHKAR KOR	Cirrhinus molitorella	0	0	151	114	26	19	311	0.09%	
			-							

	pecies by Month's for De	Month Total							
Khmer name	Scientific name	Jul	Aug	Sep	Oct	Nov.	Dec.	Value	%
CHHPIN	Hypsibarbus pierrei	0	0	26	223	18	18	285	0.08%
CHHMAR	Setipinna melanochir	0	2	260	14	4	0	279	0.08%
CHANGWA CHUNCHUOK	Crossocheilus reticulatus	0	0	24	17	58	175	274	0.08%
KANHCHOS BAY	Mystus albolineatus	1	0	17	40	134	80	272	0.08%
ANDENG TUN	Clarias macrocephalus	0	16	2	16	93	130	257	0.08%
SRAKA KDAM	Cyclocheilichlhys lagleri	0	0	15	11	42	177	245	0.07%
KANHCHOS	Mystus singaringan	1	0	147	45	32	13	237	0.07%
ANDENG TUN	Clarias meladerma	0	4	2	23	198	5	232	0.07%
ANGKAT PRAK	Puntius aurotaeniatus	0	1	2	99	2	121	225	0.07%
KHMAN	Hampala macrolepidota	24	0	96	14	56	31	222	0.07%
ANDAT CHHKE	Synaptura marginata	0	9	170	18	22	1	221	0.07%
KAMPHLIEVKHLANH	Kryptoplerus cryptopterus	0	27	56	16	93	12	202	0.06%
PAVA MOKMUOY	Labeo dyocheilus	0	0	119	77	0	1	197	0.06%
CHHKOKTITUY	Albulicbthys albuloides	0	0	164	1	24	3	192	0.06%
KROS	Osteochilus basseltii	0	0	147	5	22	12	186	0.05%
KAMPHLIEV	Kryptoplerus hexapterus	0	0	41	0	65	71	177	0.05%
CHHPIN PRAK	Barbodes gonionolus	0	13	135	24	0	0	172	0.05%
KRORMORM	Ompok bimaculatus	0	0	72	54	33	8	167	0.05%
ANTONG	Monopterus albus	0	0	37	111	5	2	155	0.05%
KANHCHROUK LOEUNG	Botia lecorttei	0	1	8	113	31	1	155	0.05%
PROR LUNG/CHRAWLANG	Leptobarbus hoevenii	0	0	111	35	2	6	153	0.05%
DAMREY	Oxyeleotris marmorata	0	0	0	105	25	21	151	0.04%
BANDOL AMPOAV	Clupeichthys aesarnensis	0	0	0	108	41	0	149	0.04%
KANHCHOS CHHNOT	Mystus multiradiatus	0	78	17	30	10	4	139	0.04%
ANGKAT PRAK	Puntius brevis spp.	0	2	35	31 101	20	41 2	129 127	0.04%
KHCHOUENG	Macrognathus maculatus	0	0 0	10		14	2 97	127	0.04%
CHANGWA NONONG	Lobocheilos quadrilineatus	0	4	11 69	0 22	16 19	97 7	125	0.04%
KAMPHLEANH SAMREI	Trichogaster trichopterus	0	4 0		7		67		0.04%
KROS	Osteochilus waandersii	0	1	15	0	26 18	93	115 113	0.03%
KAMPHL1EV KHSAN	Kryptoplerus schilbeides Channa gachua	1	8	76	8	17	1	113	0.03%
KAMPHL1EV	Kryptoplerus moorei	0	0	0	72	38	3	112	0.03%
KANHCHOS KDAONG	Heterobagrus bocourti	0	1	0	22	14	73	112	0.03%
KAMPEUS	neeroougnus oocourn	0	0	1	9	79	12	101	0.03%
KROS	Osteochilus microcephalus	d	0	15	1	52	30	98	0.03%
TA AUN	Wallago leerii	0	0	16	66	14	2	97	0.03%
BANDOL SOK/SMOK	Cyrinocbeilus spp.	0	0	42	20	26	6	95	0.03%
KANTRANG PRENG	Parambassis wolffli	0	0	0	13	74	3	90	0.03%
DANG KHTENG	Macrochirichthys macrochirus	0	0	38	40	3	2	83	0.02%
SLOEUK RUSSEY	Paralaubuca barroni	0	0	8	72	1	1	82	0.02%
KAMBOT CHRAMOS	Amblyrhynchichthys truncatus	0	0	0	2	50	23	75	0.02%
BANG KUOY	Luciosoma bleekeri	0	0	72	1	1	0	74	0.02%
CHHVEAT	Pangasius polyuranodon	0	3	43	5	4	11	66	0.02%
KAMPHLIEV STOEUNG	Kryptoplerus cheveyi	0	2	8	5	38	11	63	0.02%
ANDAT CHHKE	Cynoglossus punticeps	1	0	4	54	1	0	59	0.02%
KULREANG/KAHOR	Catlocarpio siamensis	0	0	5	32	20	0	57	0.02%
KE	Pangasius conchophilus	0	0	0	48	1	6	55	0.02%
PHTONG	Xenentodon cancila spp.	0	0	0	0	19	25	44	0.01%
PRAMA	Boesemania microlepis	0	0	0	0	35	0	35	0.01%
CHANGWA	Rasbora myersi	0	1	20	1	1	10	33	0.01%
ANDAT CHHKE	Achiroides leucorhynchos	0	0	12	17	0	2	31	0.01%
SRAKA KDAM	Cyclocheilichthys repasson	0	0	1	20	0	8	30	0.01%
SLOEUK RUSSEY	Paralaubuca harmandi	0	0	28	0	0	0	28	0.01%
SRAKA KDAM	Cyclocheilichthys apogon	0	0	1	7	8	10	26	0.01%
BANDOL AMPOAV	Clupeichthys borneensis	0	0	0	0	26	0	26	0.01%
ANDENG ROEUNG	Clarias batrachus	0	0	1	15	0	9	24	0.01%
ANDAT CHHKE	Brachirus harmandi	0	0	4	15	4	1	23	0.01%
KANHCHOS THMOR	Leiocassis siamensis	0	0	0	7	9	7	23	0.01%
KANHCHOS	Mystus wolffi	1	1	14	1	3	4	23	0.01%

Total Sale Price by Species by Months for Dai Trey Linh

		Month					Total				
Khmer name	Scientific name	Jul	Aug	Sep	Oct	Nov.	Dec.	Value	%		
KROS	Osteochilus lini	0	1	20	0	3	0	23	0.01%		
KANH CHANH CHRAS THOM	Parambassis apogonoides	0	3	9	8	1	0	21	0.01%		
KANH CHANH CHRAS TOCH	Parambassis siamensis	0	0	8	5	1	6	21	0.01%		
KUL CHEK	Epalzeorhynchos frenatum	0	0	1	10	2	7	20	0.01%		
KAMPHLEANH PHLUK	Trit hogaster microlepis	0	6	11	0	1	3	20	0.01%		
PHKAR KOR	Cyclocheilichthys armalus	0	0	2	16	1	0	19	0.01%		
BANDOL AMPOAV	clupeichtys goniognathys	0	0	0	0	18	0	19	0.01%		
CHANTEAS PHLUK	Parachela williaminae	0	0	3	8	3	2	15	0.0045%		
SLOEUK RUSSEY	Paralaubuca riveroi	0	0	10	3	0	0	13	0.0037%		
CHANOWA PHLIENG	Esomus longimana	0	0	0	2	3	7	12	0.0034%		
LOLORK SOR	Osteochilus schlegeli	0	0	10	0	2	0	11	0.0034%		
CHANOWA NONONG	Lobocheilos melanotaenia	0	2	1	4	0	5	11	0.0033%		
CHANGWA NONONG	Lobocheilos davisi	0	0	0	0	5	6	11	0.0031%		
SLOEUK RUSSEY	Oxygaster anomalura	0	0	2	8	0	0	10	0.0028%		
ANDAT CHHKE	Brachirus orientalis	0	0	8	1	1	0	9	0.0028%		
ANTONG	Ophisternon bengalensc	0	0	0	7	0	2	9	0.0028%		
KANTHOR	Trichogaster pectoralis	0	0	6	3	0	0	9	0.0027%		
CHANGWA CHHNOT	Rasbora espei	0	0	0	7	0	1	8	0.0024%		
KAMPREAM	Polynemus multijilis spp.	0	0	0	0	7	1	8	0.0022%		
CHANLUON MOAN	Coilia lindmani	0	1	2	1	2	2	7	0.0021%		
CHANGWA	Rasbora hobelmani	0	0	2	3	0	0	6	0.0016%		
CHANGWA CHHNOT	Boraras urophthalmoides	0	0	0	4	1	0	5	0.0016%		
KANHCHORN CHEY	Channa lucius	0	0	5	0	0	0	5	0.0015%		
PRA KHCHOA	Pangasius bocourti	1	0	4	0	0	0	5	0.0014%		
ANDENG AFRIC	Clartas gariepinus	0	0	0	0	0	4	4	0.0012%		
KRORMORM	Hemistlurus mekongensis	0	0	4	0	0	0	4	0.0012%		
TRASORK	Probarbus jullieni	0	0	0	0	4	0	4	0.0012%		
CHEK TUM	Bagrichthys macracanthus	0	0	0	0	1	2	4	0.0011%		
CHHDOR/DIEP	Channa micropeltes	0	0	0	0	3	0	3	0.0010%		
CARP SAMANH	Cyprinus carpio	0	0	0	1	1	1	3	0.0010%		
KAOK	Arius caelatus	0	0	0	0	2	1	3	0.0009%		
CHANLUON MOAN	Coilia macrognathos	0	0	0	0	0	2	2	0.0007%		
CHANGWA CHHNOT	Rasbora pavic'i	0	0	0	0	2	0	2	0.0005%		
ANHCHOS KRAWBEY	Glyptothorax Justus	0	2	0	0	0	0	2	0.0005%		
KANHCHREA	- 51	0	1	0	0	0		1	0.0004%		
KANHCHEAK SLA	Toxoles chatareus	0	0	0	1	0	0	1	0.0004%		
KAOK	Arius truncalus	0	0	0	0	0	1	1	0.0003%		
CHHKOK POKMOAT BEY	Cyclocheilichthys heteronema	0	0	0	0	1	-	1	0.0003%		
CHHPIN KRAHORM	Hypsibarbus wettnorei	0	0	0	0	1		1	0.0002%		
KHLA /BEY KAMNAT	Systomus partipentazona	0	0	0	1	0		1	0.0002%		
KAOK	Hemipimelodus bicolor	0	0	0	0	0	0	0	0.0001%		
KAOK	Hemipimelodus borneensis	0	0	0	0	0	0	0	0.0001%		
PO PRUY	Pangasius sanitwongsci	0	0	0	0	0	0	0	0.0001%		
ANDAT CHHKE	Brachirus panoides	0	0	0	0	0	0	0	0.0001%		
		5		2	5	5		5			

Total Sale Price by Species by Months for Dai Trey Link

Monthly average price for each species (Riel/kg)

Khmer name	Scientific name		Month					Weighted Average
		Jul	Aug	Sep	Oct	Nov.	Dec.	
RIEL TOB	Cirrhinus siamensis	500	411	784	656	581	545	763
RIEL AWNG KAM	Clrrhinus lobatus	288	383	S44	655	715	515	743
ARCH KOK	Labioharbus siamensis		400	714	734	957	1,987	756
SLOEUK RUSSEY	Paralaubuca typus		400	612	620	401	548	611
CHHPIN	Hypsibarbus malcolmi			1,680	1,744	1,248	1,327	1,670
KES	Micronema apogon	2,417	3,611	3,439	3,678	3,328	1,300	3,105
PRUOL/KRALANG	Cirrhinus microlepis			779	739	486	587	756
KHNANG VENG	Labiobarbus kuhli		314	503	861	434	200	626
ROS/PTUOK	Channa striata	2,000	747	3,123	1,646	2,615	2,577	2,498
CHRA KENG	Puntioplites proctozysron			1,647	1,832	476	578	1,090
ANDAT CHHKE	Cynoglossus feldmanni	500	881	811	1,683	1,090	1,334	1,145
PRA	Pangasianodon hypophthalmus		361	1,002	896	1,212	1,079	993
KHCHOEUNG	Mastacembalus favus	3,801	3,846	4,121	5,489	3,832	3,544	4,539
SANDAY	Wallago attu	5,001	2,000	2,714	640	2,500	2,610	2,694
		1 170	2,000		1,395	1,271	575	1,534
CHHLANHG	Hemibagrus spilopterus	1,479		1,981				
KANHCHROUK CHHNOT	Botia helodes		500	743	762	525	581	700
CHHPIN	Hypsibarbus lagleri			535	1,724	1,091	1,100	1,461
KRANH	Anabas testudineus	420	912	883	1,108	789	772	901
RUSCHEK	Acanthopsoides spp.			518	1,912	2,111	906	1,964
KAEK	Labeo chrysophekadion		500	872	1,080	584	522	806
CHRA KENG	Puntioplites waandersi			795	878	596	545	630
SLAT	Notopterus notopterus			1,137	1,423	3,312	1,470	1,952
KHLANG HAI	Belodontichthys truncatus			1,255	1,647	1,835	1,235	1,519
AMPIL TUM	Puntius orphoides			843	538	1,120	962	835
СННКОК	Cyclocheilichthys enoplos			1,622	706	557	872	1,031
CHANTEAS PHLUK	Parachela maeulicauda			1,000	1,000	430		1,000
BANG KORNG	Macrobrabrium rogenbergii			3,357	4,455	5,145	5,064	4,562
KHMAN	Hampala dispar			1,105	1,629	3,587	930	1,417
KAHE LOEUNG	Bar bodes schwanenfeldil			1,243	1,345	641	667	1,230
LINH	Thynnichthys thynnoides	250	809	651	609	708	660	650
CHHKOK PHLEUNG	Cyclocheilichthys furcatus			2,370		990	1.700	2,335
TRANEL	Hemibagrus ftlamentus				3,000	4,955		3,644
PO	Pangasius larnaudii		600	1,296	1,119	1,797	822	1,278
KES	Kryptopterus micronema		3,857		2,400	4,150	3,750	3,842
KANHCHROUK KRAHORM	Botia modesta		598	339	911	466	521	680
KROM	Osteochilus melanopleura			1,394	1,288	530	2,862	1,162
KANTRORB	Pristolepis fasciata			849	943	518	537	786
BANDOL AMPOAV				390	758	645	607	620
	Corica laciniata Macrognathus taeniagaster						007	
KHCHOUENG	0			2,5 11	5,760	1,000	1.100	4,633
SLAT/KRAY	Chitala lopis				4,000	3,500	1,109	3,357
KRAY	Chitala ornata				2,907			2,907
KANHCHOS CHHNOT	Mystus atrifasciatus	250	726	836	820	506	495	760
KAMPOUL BAY	Cosmochilus harmandi			1,048	1,528	733	753	1,132
KANHCHOS CHHNOT	Mystus myslicetus		502	829	833	654	733	769
ANDENG TUNLE	Plotosus canius			3,000			2,600	2,993
CHRA KENG	Puntioplites falcifer			1,413	784	560	500	676
CHANTEAS PHLUK	Parachela siamensis		500	450	879	717	772	839
CHHVEAT	Pangasius macronema	304	290	900	749	754	1,385	885
KAMPOT	Tetraodon spp		267	399	555	1,112	600	551
KES	Micronema bleckeri			3,652	5,000	2,575		3,974
KANHCHROUK	Botia morleti			859	1,700	460	455	644
CHHLONH	Macrognathus siamensis		1,400	598	1,138	1,450	563	748
KES PRAK	Kryptopterus limpok		1,488	3,000		4,000		2,433
KANHCHROUK	Botia beauforti			473	788	639	1,000	669
KRAY	Chitala blanci				1,000	7,214		4,676
CHANGWA MOUL	Rasbora aurotaenia		480	665	651	700	521	660
KAHE KRORHORM	Barbodes altus		100	641	1,227	655	538	668
	Daroouco Unino			041	/ تـ تـ , •	000	550	008

Monthly average price for each species (Riel/kg)

Khmer name	Scientific name		Mo nth					Weighted Average
		Jul	Aug	Sep	Oct	Nov,	Dec.	
PHKAR KOR	Cirrhinus molitorella	200		330	503	463	564	400
CHHPIN	Hypsibarbus pierrei			2,000	1,686	605	1,047	1,482
CHHMAR	Setipinna melanochir		440	1,000	907	888		984
CHANGWA CHUNCHUOK	Crossocheilus reticulatus		400	564	619	665	513	549
CANHCHOS BAY	Mystus albolineatus	268		508	778	741	756	726
ANDENG TUN	Clarias macrocephalus		4,000	1,000	2,055	2,102	1,970	2,072
SRAKA KDAM	Cyclocheilichthys laglert		1,000	397	588	847	494	527
KANHCHOS		357		1,000	990	1,179	542	968
		557	1.000					
ANDENG TUN	Clarias meladerma		4,000	1,000	1,353	3,094	1,270	2,637
ANOKAT PRAK	Puntius aurotaeniatus		200	300	517	460	570	536
KHMAN	Hampala macrolepidota	4,000	400	1,477	641	678	775	1,022
ANDAT CHHKE	Synaptura marginata		1,178	971	944	1,054	1,250	986
KAMPHLIEV KHLANH	Kryptoplerus cryptopterus		491	619	978	1,240	958	819
PAVA MOKMUOY	Labeo dyocheilus			610	797		1,000	674
CHHKOK TITUY	Albulichthys albuloides			1,491	712	758	1,300	1,321
KROS	Osteochilus hasseltii			615	500	943	750	645
KAMPHLIEV	Kryptoplerus hexapterus			706		662	852	739
CHHPIN PRAK	Barbodes gonionotus		1,000	750	2,200			844
KRORMORM	Ompok bimaculatus			1,640	1,930	2,054	975	1,738
ANTONG	Monopterus albus			558	3,000	5,000	2,000	1,466
KANHCHROUK LOEUNG	Botia lecontei		1,400	605	612	808	500	645
PROR LUNG/CHRAWLANG			1,400	683		500	435	
	Leptobarbus hoevenii			083	568			637
DAMREY	Oxyeleotris marmorata				2,757	2,476	2,343	2,642
BANDOL AMPOAV	Clupeichthys aesarnensis				761	583		702
CANHCHOS CHHNOT	Mystus multiradiatus		837	750	742	754	500	784
ANGKAT PRAK	Puntius brevis spp.		282	450	652	729	609	569
KHCHOUENG	Macragnathus maculatus			500	3,865	2,000	1,000	2,300
CHANGWA NONONG	Lobocheilos quadrilineatus			600		500	518	522
KAMPHLEANH SAMREI	Trichogaster trichopterus		475	567	535	643	607	570
KROS	Osteochilus waandersii			300	330	543	493	449
KAMPHLIEV	Kryptoplerus schilbeides	300	260	450		708	539	553
KHSAN	Channa gachua	243	463	801	704	860	700	748
KAMPHLIEV	Kryptoplerus moorei				979	706	625	856
KANHCHOS KDAONG	Heterobagrus bocourti		240		1,000	563	500	557
KAMPEUS	netrobagnas sociari		210	450	657	1,607	734	1,235
KROS								
	Osteochilus microcephalus			300	300	500	500	451
TA AUN	Wallago leerii			1,590	1,935	1,763	500	1,769
SANDOL SOK /SMOK	Gyrinocheilus spp.		200	737	784	674	786	722
KANTRANG PRENG	Parambassis wolfjii				764	1,270	990	1,149
DANG KHTENG	Macrochirichthys macrochirus			660	670	3,240	770	688
SLOEUK RUSSEY	Paralaubuca barroni			300	986	1,000	500	797
CAMBOT CHRAMOS	Amblyrhynchichthys truncatus				1,000	482	597	520
BANG KUOY	Luciosoma bleekeri			784	480	700		776
CHHVEAT	Pangasius polyuranodon	260	390	1,000	767	880	629	831
AMPHLIEV STOEUNG	Kryptoplerus cheveyi		400	480	900	636	525	593
ANDAT CHHKE	Cynoglossus punticeps	459	410	300	588	750		551
ULREANG/KAHOR	Catlocarpio siamensis			525	857	883		818
ζE	Pangasius conchophilus			-	1,043	1,000	1,375	1,069
HTONG	Xenentodon cancila spp.				-,075	744	721	730
			100				/ 21	
PRAMA	Boesemania mlcrolepls		400	ou -		5,000		4,425
CHANGWA	Rasbora myersi		1,000	812	500	1,000	1,000	854
ANDAT CHHKE	Achiroides leucorhynchos			300	500	400	667	400
RAKA KDAM	Cyclocheilichthys repasson			300	512		547	506
LOEUK RUSSEY	Paralaubuca harmandl			448				448
SRAKA KDAM	Cyclocheilichthys apogon			300	433	834	500	531
ANDOL AMPOAV	Clupeichthys borneensis					490		490
NDENG ROEUNG	Clarias batrachus			500	3,000		2,160	2,414

Monthly average price for each species (Riel/kg)

Khmer name	Scientific name		Month						
		Jul	Aug	Sep	Oct	Nov,	Dec.	Average	
KANHCHOS THMOR	Leiocassis siamensis				680	860	545	686	
KANHCHOS	Mystus wolffi	500	405	1,000	800	508	500	724	
KROS	Osteochilus lini		500	300		760		329	
KANH CHANH CHRAS THOM	Parambassis apogonoides		431	600	911	1,000		663	
KANH CHANH CHRAS TOCH	Parambassis siamensis			600	698	430	857	664	
KUL CHEK	Epalzeorhynchos frenatum		400	800	559	500	440	505	
KAMPHLEANH PHLUK	Trichogaster microlepis		500	1,000		1,000	650	744	
PHKAR KOR	Cyclocheilichthys armatus			300	429	400		40	
BANDOL AMPOAV	clupeichtys goniognathys		300			444		440	
CHANTEAS PHLUK	Parachela williaminae			300	480	400	500	422	
SLOEUK RUSSEY	Paralaubuca riveroi			337	500			361	
CHANGWA PHLIENG	Esotnus longimana				500	530	500	507	
LOLORK SOR	Osteochilus schlegeli			800		920		817	
CHANGWA NONONG	Lobocheilos melanotaenia		210	300	500		595	409	
CHANQWA NONONG	Lobocheilos davisi					926	839	87	
SLOEUK RUSSEY	Oxygaster anomalura			300	750			565	
ANDAT CHHKE	Brachirus orientalis			330	750	750		362	
ANTONG	Ophisternon bengalense				1,057		2,000	1,175	
KANTHOR	Trichogaster pectoralis			2,000	500		480	998	
CHANGWA CHHNOT	Rasbora espei				500		1,000	533	
KAMPREAM	Polynemus multifilis spp.					1,120	830	1,079	
CHANLUON MOAN	Coilia lindmani		400	450	714	767	750	593	
CHANGWA	Rasbora hobelmani			300	500	400		393	
CHANGWA CHHNOT	Boraras urophlhalmoides				525	400		491	
KANHCHORN CHEY	Channa lucius			1,000				1,000	
PRA KHCHOA	Pangasius hocourti	293	200	488				426	
ANDENG AFRIC	Clarias gariepinus						2,000	2,000	
KRORMORM	Hemisilurus mekongensis			2,000			_,	2,000	
TRASORK	Probarbus jullieni			_,		2,000		2,000	
CHEK TUM	Bagrichthys macracanthus		400			1,000	1,100	2,000	
CHHDOR/DIEP			400			575	1,100	575	
CARP SAMANH	Channa micropeltes Cyprinus earpio				700	550	430	540	
KAOK					700	1,000	1,000	1,000	
CHANLUON MOAN	Arius caelalus Coilia macrognathos		370			1,000	400	395	
CHANGWA CHHNOT	Rasbora paviei		570			900	400	900	
			600			900		600	
KANHCHOS KRAWBEY KANHCHREA	Glyptothorax fuscus		1,330					1,330	
	Tunda				800				
KANHCHEAK SLA	Trixotcs chatareus		450		800		1.000	625	
KAOK	Arius truncatus					0.20	1,000	1,000	
CHHKOK POKMOAT BEY	Cyclocheilichthys heteronema					930		930	
CHHPIN KRAHORM	Hypsibarbus wetmorei				700	400		400	
KHLA /BEY KAMNAT	Syslomus partipentazona				700			700	
KAOK	Hemipimelodus bicolor		400					400	
KAOK	Hemipimelodus borneensis		400					400	
PO PRUY	Pangasius sanitwongsei		400					400	
ANDAT CHHKE	Brachirus panoides		390					390	